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a b s t r a c t

The back-arc area of the southern Central American arc–trench system in East Costa Rica is characterized
by a complex basin system. An extensional back-arc area (the North Limón Basin) and a compressional
retro-arc foreland basin (the South Limón Basin) are closely related. Both basins are separated by an
approximately 50 km long and 30 km wide mound-shaped structure referred to as Moín High, which
evolved in Eocene times. The Moín High has previously been interpreted as a basement structure or
paleo-high. The modern geothermal gradient is 3 �C/100 m. There is no evidence for thermal anomaly
or higher heat flow in that area. A mean heat flow of 56–60 mW/m2 implies that an origin as a volcanic
seamount or magmatic intrusion is unlikely. 3D static models show that the Moín High trends NNE–SSW
and has an antiformal shape in cross-section and an elliptic outline in map view. The trend of the Moín
High coincides with the orientation of folds in West Costa Rica that formed in response to an Eocene
deformation phase. The seismic lines show that Miocene reflectors onlap against the structure. Based
on this data set it is likely that the Moín High is an anticline formed due to contraction.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The Limón back-arc basin extends along the Caribbean Coast of
Costa Rica. In the central and northern part of this basin large
mound-shaped structures occur (Fig. 1), which have been inter-
preted as basement structures (Sheehan et al., 1990) or paleo-highs
(Barboza et al., 1997). One of these structures is referred to as Moín
High, which is located close to the present-day coastline north of
Puerto Limón, next to the Trans Isthmic Fault System at the bound-
ary of the undeformed North Limón Basin and the deformed South
Limón Basin. The Moín High evolved in Eocene times (Barboza
et al., 1997), has an elliptic outline in map view and represents a
four-way dip closed area. In general such a structure is an interest-
ing exploration target because it can retain oil and gas. In the past
the Limón Basin was regarded as prolific hydrocarbon province and
several wells were drilled (e.g., Sheehan et al., 1990; Barboza et al.,
1997; Petzet, 1998). Archer et al. (2005) showed the importance of
a careful and multi-disciplinary examination of such a structure to
avoid a misinterpretation and to minimize the risk for hydrocarbon
exploration. Based on the shape and outline, there are different
possibilities to explain the evolution of the Moín High: (1) a volca-
nic seamount, (2) a magmatic intrusion, (3) a salt pillow/diapir, (4)
an uplifted basement block, (5) an inversion structure or (6) an
anticline (Fig. 2). Seismic sections and well data made available
by the Costa Rican Ministry of Environment and Energy (MINAE)
ll rights reserved.

: +49 5117622172.
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allow a detailed reconstruction of the geometry and temporal evo-
lution of the structure. Pre-growth, growth and post-growth strata
was analysed to reconstruct the uplift history of the Moín High.
The combination of seismic lines, well data, 3D static models and
basin modelling techniques helps to verify the different possibili-
ties for its mode of origin.

2. Geological setting

The geology of Central America is characterized by the interac-
tion of five lithospheric plates, namely the oceanic Cocos, Nazca
and Caribbean Plates and the continental North and South Ameri-
can Plates (Fig. 3a). Tectonics processes in this region are domi-
nated by the subduction of the Cocos and Nazca Plates beneath
the Caribbean Plate along the NW–SE trending Central America
trench. The present-day subduction velocity off Costa Rica, relative
to the Caribbean Plate, is 8.5 cm/yr (DeMets, 2001). The Central
American subduction zone is characterized by strong along-trench
variations in the dip angle of the Wadati–Benioff zone. Protti et al.
(1995) observed an angle of 84� under Nicaragua, 60� under Cen-
tral Costa Rica and a flat slab with no Wadati–Benioff zone under
South Costa Rica. The Central American land-bridge above this sub-
duction zone is a complex assemblage of distinct crustal blocks
(Fig. 3a) including, from NW to SE, the Maya, Chortis, Chorotega
and Choco Blocks (Donnelly, 1989; Weinberg, 1992; Di Marco
et al., 1995; Campos, 2001). The Maya and Chortis Blocks have a
continental basement, whereas the Chorotega and Choco Blocks
comprise island-arc segments underlain by Mesozoic oceanic crust
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Fig. 1. Map of the Costa Rica back-arc area, showing main faults, structural highs and sediment thickness (based on Barboza et al. (1997)).
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(Escalante and Astorga, 1994). The Chorotega Block, which repre-
sents the Costa Rican part of the island-arc, can be subdivided into
a northern and a southern arc segment (Seyfried et al., 1991). The
northern arc segment is bounded to the north by the Hess Escarp-
ment and to the south by the Trans Isthmic Fault System (Fig. 3b).
The Hess Escarpment is a NE–SW trending bathymetric feature in
the Caribbean Sea, which separates the continental Chortis Block
from the oceanic Colombia Basin (Krawinkel and Seyfried, 1994;
Campos, 2001). The Hess Escarpment has been interpreted as an
Upper Mesozoic Plate boundary, acting as a strike-slip zone to
compensate the movements between the Chortis and Chorotega
Blocks and the Caribbean Plate (Krawinkel, 2003). The Trans Isth-
mic Fault System is an E–W trending active lineament. It shows
mainly sinistral movements (Krawinkel and Seyfried, 1994; Kra-
winkel, 2003). The southern Costa Rican arc segment is located
south of this lineament and belongs to the Panama Microplate.

The Limón back-arc basin is situated beneath the present-day
coastal plain and continental shelf of eastern Costa Rica (Fig. 3b)
(Weyl, 1980). Its northern boundary is the Hess Escarpment, to
the west and south the basin is bounded by the volcanic arc. The
eastward extent is defined by the 200 m bathymetric contour line
of the Caribbean Sea in the north and by the extent of the Limón
fold-and-thrust belt in the south (Fig. 3b). The Limón Basin can
be subdivided into a northern and a southern sub-basin, separated
by the Moín High and the Trans Isthmic Fault System (Fig. 3b). The
Moín High is located north of Puerto Limón (Fig. 3c). The North
Limón Basin belongs to the North Costa Rican arc segment, and
in contrast to the South Limón Basin, is undeformed. The North
Limón Basin is filled with up to �7 km of Upper Cretaceous to Re-
cent deep-marine and continental volcaniclastic rocks and lime-
stones (Sheehan et al., 1990; Bottazzi et al., 1994), and still
undergoes subsidence today (Mende, 2001). The South Limón Ba-
sin, located on the South Costa Rican arc segment, is filled with
up to �8 km of Upper Cretaceous to Recent deep-marine to conti-
nental volcaniclastic rocks (Sheehan et al., 1990; Coates et al.,
1992, 2003; Amann, 1993; Bottazzi et al., 1994; Fernandez et al.,
1994; McNeill et al., 2000; Mende, 2001; Campos, 2001). Deposi-
tion of carbonates occurred during Late Cretaceous, Eocene and
Oligocene times (Fig. 3d). In southern Costa Rica conditions change
from steep low stress subduction to flat high stress subduction. The
island-arc shows a deformed and uplifting fore-arc and back-arc
area, separated by the Talamanca Range with a height of 3.8 km
and a width of 60 km. In the Talamanca Range the highest peaks
of southern Central America occur, but there are no active volca-
noes in that region. The back-arc is dominated by the Limón
fold-and-thrust belt (Barboza et al., 1997). The internal part of this
fold-and-thrust belt is characterized by thick-skinned tectonics.
Deep earthquake loci provide evidence for active, deep seated
thrusts (Suárez et al., 1995). In contrast, the external part of the
Limón fold-and-thrust belt adjacent to the Caribbean Coast is dom-
inated by thin-skinned tectonics. Seismic reflection lines show that
all thrusts sole into a common detachment at a depth of 3.7–4 km
(Brandes et al., 2007). Since the Middle Miocene the fill of the on-
shore South Limón Basin was affected by intense folding and
thrusting (Campos, 2001). Recent earthquake activity indicates
ongoing deformation in this region (Protti and Schwartz, 1994;
Suárez et al., 1995).
3. Database and methods

The data used in this study include a grid of 2D seismic reflec-
tion lines, comprising NE–SW directed in-lines and NW–SE direc-
ted cross-lines (Fig. 3c). The seismic lines were acquired during
onshore and offshore seismic campaigns in the 1970s and 1980s.
Stratigraphic and lithologic control for the seismic interpretation
is derived from one onshore well (Well 1). This well penetrates
Pleistocene to Eocene sandstones, shales and limestones. Data from
a second offshore well (Well 2) were also integrated. Seismic inter-
pretation was performed with the software package Kingdom
Suite�. The seismic interpretation was used as a basis for the 3D
interpretation of the Moín High and the surrounding basin-fill.
Key seismic reflectors (base Middle Miocene, base Late Miocene,
base Pliocene, base Quaternary and sea-floor) were identified and
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Fig. 2. Different modes to explain the evolution of the Moín High: (1) a volcanic
seamount, (2) a magmatic intrusion, (3) a salt pillow/diapir, (4) an uplifted
basement block, (5) an inversion structure or (6) an anticline structure.

C. Brandes et al. / Journal of South American Earth Sciences 28 (2009) 1–13 3
mapped in detail throughout the study area. 3D static models were
created to visualize the geometry of the Moín High. From the seis-
mic data it was also possible to identify different deformation
phases, which can be correlated with the deformation phases that
had previously been recognized in the onshore area of Costa Rica.
Basin modelling was carried out with the software PetroMod� 1D
to reconstruct the burial history of the Moín High. A depth conver-
sion was performed on the basis of interval velocities to infer the
real geometry of the structure.
4. Seismic interpretation and well data

Several seismic lines allow insight into the Moín area (Fig. 3c).
Well 1 was drilled onshore, north of Puerto Limón on the northern
flank of the Moín High close to the present-day coastline and pro-
vides the necessary stratigraphic and lithologic control for the seis-
mic interpretation. On the seismic sections, the Moín High has a
mound-like, antiformal shape. The length of the structure is
approximately 50 km, the width is approximately 30 km. The
southern flank is steeper than the northern one. The seismic line
(a), shown in Fig. 4a) displays a package of strong reflectors, which
separates the Moín High from the surrounding and overlying sed-
imentary rocks. Especially the upper reflectors are very distinct
and continuous. The reflector package has a constant thickness
even on the crest of the structure. Below this reflector package
the Moín High shows a weakly layered reflector pattern with single
slightly stronger reflectors, which are not continuous. The central
part of the structure is characterized by a very diffuse reflector pat-
tern. There is no reliable information for these parts of the Moín
High and the presence of artefacts can not be ruled out. On the
seismic section (b) shown in Fig. 5 the reflector package on the
northern flank of the structure is less distinct, but a set of strong
reflectors are present, which delineate the Moín High from the sur-
rounding and overlying sedimentary rocks. These strong reflectors
may result from an increase in the acoustic impedance. Data qual-
ity of the in-lines is limited and the internal structure is not visu-
alized very well on these sections. A small graben structure is
visible in the crestal area of the Moín High (Fig. 4b). The fill of
the North Limón Basin is characterized by laterally continuous
reflectors, which can be traced along section (b) (Fig. 5). These
reflectors form packages with a constant thickness. The individual
packages are bounded by high amplitude reflectors. Some of the
high amplitude reflectors can be correlated with lithological
changes. The strong reflector at 2.3 s in Fig. 4a) corresponds to a
change from shale to limestone at the boundary Early Miocene–
Middle Miocene in Well 1.

Well data in combination with the seismic lines provide impor-
tant information about the temporal evolution of the Moín High.
Well 1 penetrates Pleistocene to Middle Eocene sandstones, shales
and limestones (Fig. 4). The terminal depth is 3356 m. At a depth of
2910 m Middle Eocene limestones are directly overlain by Lower
Miocene limestones. Upper Eocene and Oligocene deposits are ab-
sent. The interpreted time gap is at least 15 Ma. Early Miocene and
Early Middle Miocene deposits show a clear onlap against the Moín
High. This is indicated by several onlapping reflectors (Figs. 4b and
5). Late Middle Miocene and Late Miocene reflectors drape the
Moín High. The wedging of reflector packages against the Moín
High implies that the missing Upper Eocene and Oligocene units
are present in the deeper parts of the basin. The unconformity on
the flank of the Moín High is interpreted as a local feature, it is
not present in the deeper parts of the basin. Middle Miocene and
Pliocene to Lower Pleistocene deposits show an increased thick-
ness above the crestal graben structure.

The depth converted section without vertical exaggeration dis-
plays the true geometry of the Moín High (Fig. 4d). After the depth
conversion, the structure has a much lower relief than on the seismic
section in two-way-travel time, but the convex shape is still present.

From the seismic lines, 3D static models were created. These
models clearly show that the structure has an elliptic outline and
trends NNE–SSW (Fig. 6a). An axis can be reconstructed that
plunges towards NNE. In plan view the Moín High is elongated.
The northwest and southeast flanks are steep compared to the
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gently dipping northeast one. Due to the lack of onshore data the
southwestward extent of the structure is unknown.

5. Basin modelling

Basin modelling is a numerical method to simulate the complex
processes, which occur during the formation and evolution of a
sedimentary basin (Hermanrud, 1993). The term basin modelling
is mainly used for reconstructing the burial history and tempera-
ture evolution of a basin (Poelchau et al., 1997). The basin model-
ling part of this project was carried out with the software
PetroMod� 1D, which was developed by the IES GmbH, Germany.
PetroMod� allows to study the burial history and temperature evo-
lution of a sedimentary basin.

A basin modelling study with PetroMod� follows a standard
workflow. At first a conceptual model must be created, which is
based on the results of a basin analysis. The conceptual model is
the description of the geologic evolution of a basin (Poelchau
et al., 1997). For such a conceptual model the complex real system
must be simplified and reduced to a few fundamental parameters
(Welte and Yükler, 1981). The depositional history of the basin is
divided into distinct events. Each event can represent a phase of
deposition, non-deposition or erosion. It is necessary to reconstruct
the complete evolution of a sedimentary basin. Therefore episodes
of non-sedimentation or even erosion must be quantified (Poel-
chau et al., 1997). Absolute ages and, in a second step, lithologies
must be assigned to each event. The absolute age is important to
reconstruct the temporal evolution.

In this study basin modelling was performed to reconstruct the
burial history of the Moín area. The input for the simulation is de-
rived from Well 1. The most important input parameters are the
age and thickness of the sediments as well as their lithology. The
age is important to reconstruct the temporal evolution. The lithol-
ogy determines the behaviour during compaction. The geohistory
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curve at the location of Well 1 shows a linear subsidence trend
interrupted by periods of up lift and non-deposition/erosion
(Fig. 7).

Results derived from thermal basin simulations point towards a
mean heat flow of 56–60 mW/m2 (Brandes et al., 2008). From inde-
pendent calculations based on Fourier’s law a heat flow of 51 mW/
m2 was reconstructed. Vitrinites-depth plots derived from rocks of
Well 1 indicate a maturity of 0.53 Ro% in a depth of 2820 m
(Fig. 8a). In Well 2 a maturity of 0.45–0.50 Ro% was measured in
a depth of 2080 m (Fig. 8b).

A long gap in the subsidence trend is visible. This gap is marked
by the unconformity between the Middle Eocene and the Early
Miocene. It is not clear whether the Upper Eocene and Oligocene
sediments were eroded or whether they were never deposited in
the Moín area. It is also difficult to estimate the amount of vertical
uplift of the Moín High. To quantify the amount of erosion in a sed-
imentary basin, the method of Yamaji (1986) has been established.
In this method, vitrinite reflectance data from a well will be plotted
against the depth. The intersection of the abscissa and the ordinate
is set at 0.2 Ro%. This value is characteristic for fresh vitrinites,
which were not alternated. The abscissa with the vitrinite reflec-
tance values has a logarithmic scale. Then the regression graph
through all vitrinite reflectance values will be lengthened to 0.2
Ro%. The eroded sediment thickness can be read from the ordinate.
For Well 1, 750 m of erosion is estimated with the Yamaji-method.
For Well 2 the eroded thickness is 0 m. These results are problem-
atic, as they would indicate the absence of erosion on the top of the
Moín High but 750 m of erosion at the flank. The vitrinite data
seems to be reliable, but such a trend can be disturbed by hot fluids
or the presence of resedimented vitrinite derived from erosion of
older rocks as has been described by Radke et al. (1997) and Taylor
et al. (1998).

Based on the concentric shape of the Moín High, the onlap pat-
tern and the wedging of reflector packages against the structure it



Age in Ma

D
ep

th
 in

 k
m

Holocene
45

0

1

2

3

40 30 20 10 0

Eocene

Miocene

Pliocene

Pleistocene

Temperature in °C
0.00-6.50
6.50-13.00
13.00-19.50
19.50-26.00
26.00-32.50
32.50-39.00
39.00-45.50
45.50-52.00
52.00-58.50
58.50-65.00

65.00-71.50
71.50-78.00
78.00-84.50
84.50-91.00
91.00-97.50
97.50-104.00
104.00-110.50
110.50-117.00
117.00-123.50
123.50-130.00

Fig. 7. Burial history at the location of Well 1. The subsidence trend is linear, interrupted by short phases of uplift during the late Early Miocene and the Middle Pliocene. The
last three million years are characterized by a distinct increase in subsidence.

Vitrinite reflectance in Ro%

D
ep

th
 in

 m

D
ep

th
 in

 m

0 0.2 0.4 0.6
0

500

1000

1500

2000

2500

3000

Vitrinite reflectance in Ro%
0 0.2 0.4 0.6

0

500

1000

1500

2000

2500

3000

(a) (b)Well 1 Well 2

Fig. 8. (a) Vitrinite reflectance data of Well 1, indicating a normal maturity trend. (b) Vitrinite reflectance data derived from Well 2. Both graphs show a comparable maturity
trend, whereas the data of Well 2 have a stronger scatter.

8 C. Brandes et al. / Journal of South American Earth Sciences 28 (2009) 1–13
is likely that uplift and erosion was moderate. Much of the gap is
probably caused by non-deposition. In the Middle Eocene the sub-
sidence rate was low (Fig. 7). After the period of non-deposition,
subsidence continued. This subsidence trend is interrupted by
short phases of uplift during the late Early Miocene and the Middle
Pliocene. The last three million years are characterized by a distinct
increase in subsidence. This might be an effect of the extensional
regime that established in the North Limón Basin at that time.
Large listric normal faults support this idea (Brandes et al., 2007).
6. Discussion and interpretation

The most obvious explanation for the Moín High is the sea-
mount origin. Seamounts are common features in an oceanic envi-
ronment (e.g., Francis and Oppenheimer, 2004). They have a
conical shape and consist of lava flows and volcaniclastic rocks
(e.g., Orton, 1996). Bowland and Rosencrantz (1988) described iso-
lated basement knolls 100–200 km offshore from the east coast of
Costa Rica, which they interpreted as seamounts. Both Wells 1 and
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2 terminate in Middle Eocene tuffs. Well 2 also penetrates two
basaltic lava flows of Eocene age, which both have a thickness of
approximately 10 m. The strong reflectors that envelope the
Moín High indicate an increase in the acoustic impedance. This in-
crease might result from the lithological change from sedimentary
rocks to much denser basaltic rocks of the Moín High. In addition
the strong reflector pattern on the northern flank of the structure
may reflect an intercalation of lava flows and tuffs. The basaltic
rocks in combination with the seismic data from the Moín High,
fit very well to a volcanic seamount. Furthermore several sea-
mounts like the Quepos Plateau are known from the west coast
of southern Costa Rica (Lonsdale and Klitgord, 1978; Ranero and
von Huene, 2000; Barckhausen et al., 2001). Though the seamount
origin is very likely, there are also strong arguments against the
seamount interpretation. The first one is the general absence of
seamounts in East Costa Rica. The bathymetric maps from the
Caribbean Sea show that there are no pronounced seamounts in
the back-arc area (Smith and Sandwell, 1997). The seafloor of the
adjacent Colombia Basin is also relatively smooth without a signif-
icant topography (Smith and Sandwell, 1997). Furthermore the
volcanic activity that led to the formation of a seamount should
have a pronounced thermal influence on the basin-fill. The paleo
heat flow is reconstructed on the basis of vitrinite reflectance data.
Vitrinites derived from Eocene sedimentary rocks of Well 1 indi-
cate a normal maturity (Fig. 8a). The shape of the vitrinite profiles
represents a normal sublinear trend. Thermal basin simulations
point towards a constant mean heat flow of 56–60 mW/m2 in the
area of the Moín High (Brandes et al., 2008). There is no evidence
for a higher heat flow or any thermal pulse during the evolution
of the Moín High. Despite the occurrence of the basaltic rocks in
the well, an origin as a volcanic seamount is very unlikely. In addi-
tion the tuffs and lava flows recorded in Wells 1 and 2 are consis-
tent with observations of Mende (2001). Volcaniclastic rocks with
intercalations of pyroclastic flows occur in different locations in
the Limón Basin. Following Mende (2001) these rocks represent
Eocene slope apron deposits, shed from the westward volcanic
arc. Campos (2001) also described volcaniclastic breccias and con-
glomerates with intercalated basaltic lava flows from the Eocene
Tuís formation. The outcrops are present along the front of the
Talamanca Range in the area of Turrialba. Following these authors
volcaniclastic rocks and basaltic flows were wide spread in the
Limón back-arc area in Eocene times and do not necessarily reflect
a seamount origin of the Moín High.

Another possibility to explain the origin of the Moín High is a
laccolith that intruded into the fill of the Limón Basin in post Mio-
cene times. The Talamanca Range in the west shows wide spread
intrusive rocks (De Boer et al., 1995). Laccoliths are common in
areas with magmatic activity and the convex shape of the Moín
High would fit to an intrusion. If the structure is a laccolith is must
be a young feature. At least post-Eocene. Such a young magmatic
activity can be ruled out, because of the vitrinite profiles derived
from Wells 1 and 2. There is no evidence for extensive thermal
activity, which would be caused by the emplacement of a lakkolith.
In a depth of 2820 m, Lower Miocene sedimentary rocks host vitri-
nites with a maturity of 0.53 Ro%. This maturity level coincides
with the burial depth. The same is valid for Well 2. In a depth of
2084 m a maturity of 0.45 Ro% was measured (Fig. 8b). The pres-
ent-day geothermal gradient in Well 1 is 3 �C/100 m (Astorga
et al., 1991). The seismic data also provides arguments against a
laccolith origin. A laccolith intrudes into a pre-existing sedimen-
tary succession and as a consequence the sediments above the
intrusion level will be warped up. As described above, the seismic
data show a wedging of reflector packages against the structure. In
addition clear onlaps are developed. These geometries are typical
for a paleo-topography or a growing structure that was succes-
sively buried by younger sediments. Dengo (2007) identified fring-
ing reefs on the flanks of the Moín High. This observation is also
difficult to explain with a laccolith origin.

A salt pillow/diapir can be easily ruled out because of the lack of
salt and shale in the Cretaceous and Lower Tertiary successions of
the Limón Basin. The Cretaceous is represented by limestones
(Mende, 2001; Campos, 2001) The Paleocene deposits are domi-
nated by sandstones and conglomerates, which are interpreted as
slope apron deposits (Mende, 2001). A diapir should also have
rim synclines, which are not developed in the vicinity of the
Moín High (Fig. 4a).

A package of strong reflectors envelopes the Moín High and sep-
arates it from the surrounding and overlying sedimentary rocks
(Fig. 4a). The reflector package has a constant thickness and main-
tains it even on the crest of the structure. Therefore this unit can be
interpreted as pre-growth strata. Well data show that Upper Eo-
cene and Oligocene deposits lack on the northern flank of the
Moín High. Middle Eocene deposits are directly overlain by Lower
Miocene rocks. The wedging of reflector packages against the Moín
High implies that the missing units might be present in the deeper
parts of the basin. Because of their wedge-shaped geometry these
units can be interpreted as growth strata (Fig. 4c). The lack of
Upper Eocene and Oligocene deposits can be interpreted as a re-
sponse to folding and uplift. From the growth strata geometry
the evolution of the Moín High can be reconstructed (Fig. 9). Creta-
ceous to Lower Eocene deposits are pre-growth strata. During the
Middle Eocene the first motions at the Moín High occured. Upper
Eocene units show an onlap against the structure. In Oligocene
times the vertical movements continued. Then deformation
stopped and Lower Miocene deposits draped the structure. Slight
vertical movements occurred during the Middle and Late Miocene.
From the 3D static models it can be derived that the Moín High has
an elliptic outline and a NNE plunging axis. This points towards a
WNW–ESE directed compression.

Gursky (1986) described an Eocene deformation phase that cre-
ated NE–SW trending folds on the Nicoya peninsula in West Costa
Rica. A deformation phase of the same age is known from the Cabo
Blanco Basin (Winsemann, 1992) and the Malpaís Basin (Schmidt
and Seyfried, 1991). These basins are located on the North Costa
Rica arc segment. South of the Trans Isthmic Fault System, the Eo-
cene deformation phase can be observed in the Tarcóles Basin and
the Parrita Basin (Campos, 2001). Reason for this deformation
phase can be found in a convergence between North and South
America that started in Eocene times (Gursky, 1986; Barrientos
et al., 1997). Seyfried et al., 1991 pointed out that an increase in
plate coupling between the Farallón and the Caribbean Plate might
took place at that time and caused the observed deformation and
uplift. Malfait and Dinkelmann (1972) gave a comprehensive over-
view of the tectonic evolution of the Caribbean region. They de-
scribed a major reorganization of the tectonic plates in the
Middle Eocene. The Caribbean Plate was decoupled from the East
Pacific Plate (Malfait and Dinkelmann, 1972). Bowland (1993)
showed that there was a strong sediment input into the Colombian
Basin at that time. This underlines the impact of this deformation
phase. Regarding age and geometry, it is likely that the Moín High
evolved as a consequence of the Eocene deformation phase.

The seismic data show that the Lower Miocene unit also wedges
out against the structure and that the Early Middle Miocene has a
reduced thickness on top of the Moín High. Upper Miocene depos-
its still have a slightly reduced thickness on the crest. This pattern
probably indicates the decline of the deformation. The Pliocene has
a constant thickness in the North Limón Basin and on top of the
Moín High and drapes the structure. Pliocene units above the cres-
tal graben structure show an increased thickness, which might be
related to ongoing subsidence of this graben. Quaternary deposits
drape the whole area with a constant thickness. There is no evi-
dence for vertical movements of the Moín High and large listric
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NW–SE trending normal faults in the North Limón Basin give evi-
dence for an extensional phase at that time (Brandes et al.,
2007). Pliocene and Quaternary deposits are interpreted as post-
growth strata. The seismic data imply that the Moín High is a con-
tractional structure. Therefore the existence of an anticline is the
most convincing explanation that takes all observations into
account.

Regarding the compressional origin, the Moín High is possibly
an inversion structure. Inversion is defined as a reactivation of nor-
mal faults as reverse faults. At least two deformation phases are
necessary to create an inversion structure. First, an extensional
phase with intense normal faulting has to affect the basin and later
a compressional phase that reactivates the faults and transforms
them into reverse faults. Inversion structures are well-known from
sedimentary basins with a complex and multiple-phase history
like the Central European basin system (e.g., Kockel, 2003; Mazur
et al., 2005). Mende (2001) described a Paleocene extensional
phase in the Limón Basin. With respect to the subsequent Eocene
compressional deformation phase, inversion was possible, but
there are no other true inversion structures described in Costa Rica
so far. The seismic data also does not allow to verify this idea.

Several studies have shown that in southern Central America
fore-arc and back-arc basins were affected by the low angle sub-
duction of the Cocos Ridge (Protti and Schwartz, 1994; Kolarsky
et al., 1995; Silver et al., 1995; Gräfe et al., 2002). Kolarsky et al.
(1995) compared the Cocos Ridge with an indenter that hits the is-
land-arc. Suárez et al. (1995) concluded that the Cocos Ridge does
not subduct but collides with the trench. The present-day horizon-
tal stress field in southern Costa Rica fits to an indenter scenario
(Montero, 1994). Recent studies have shown that the subduction
of the Cocos Ridge is very young. MacMillian et al. (2004) described
an onset of subduction of the Cocos Ridge not before 2–3 Ma. Such
an onset around 2 Ma, fits to the Plio-Pleistocene deformation
phase observed in the external part of the Limón fold-and-thrust
belt (Brandes et al., 2007). As shown above, the Moín High evolved
in Eocene times. Because of the large time gap of c. 40 Myr, there is
no relationship between the subduction of the Cocos Ridge and the
evolution of the Moín High.

It can be also ruled out that the Moín High is related to the
South Limón fold-and-thrust belt. The offshore part of the fold belt
evolved in Plio-Pleistocene times (Brandes et al., 2007c). The on-
shore part is interpreted to have formed in the Miocene (Campos,
2001). A Miocene origin of the onshore part of the fold-and-thrust
belt is supported by the timing of transforming the South Limón
Basin from a back-arc basin to a retro-arc foreland basin (Brandes
et al., 2008). The Moín High is clearly older than the South Limón
deformed belt. In fact the Moín High acts as an obstacle for the
propagation fold-and-thrust belt and causes the strong bend of
the thrust in the northwestern corner (Brandes et al., 2007b,c).

The quality of the seismic data is not good enough to visualize
the inner parts of the Moín High. Below the strong and continuous
reflector pattern of the northern flank, the structure shows a more
weakly layered pattern (Figs. 4a and 5). The central part shows a
very diffuse reflector pattern that might reflect the limits of resolu-
tion. The diffuse pattern can be also interpreted as an indicator for
basement rocks. Probably the Moín High is a basement-cored anti-
cline, but there is no real evidence for this. The crustal structure of
the southern Central American island-arc was described by Flueh
and von Huene (2007). Velocity analyses indicate that the Central
American land-bridge in the area of Costa Rica rests on oceanic
basement of the Caribbean Plate (Sallarès et al., 1999). This means
that the area of the Moín High is underlain by thickened oceanic
crust of the Caribbean Large Igneous Province. If the Moín High is
basement-cored, it would probably consist of basalt.

Regarding the closely related Trans Isthmic Fault System it is
likely that the origin of the Moín High is somehow linked to this
strike-slip fault. The Trans Isthmic Fault System is an E–W trending
active strike-slip fault with major sinistral movements (Krawinkel
and Seyfried, 1994; Krawinkel, 2003). Weinberg (1992) proposed
that the Trans Isthmic Fault System is a former plate boundary
and should be regarded as the southern boundary of the Chortis
Block. Marshall and Fisher (2000) provided a comprehensive kine-
matic analysis of this fault system. They used the expression Cen-
tral Costa Rica Deformed Belt for the east–west trending diffuse
fault zone. Driving mechanisms for the evolution of the Central
Costa Rica Deformed Belt are basal traction from the shallow sub-
duction, shear and horizontal shortening due to the subduction of
the Cocos Ridge and uplift caused by seamount subduction (Mar-
shall and Fisher, 2000). Following Krawinkel and Seyfried (1994)
the Trans Isthmic Fault System was active since the structuring
of the earliest island-arc units. Large anticlines related to wrench
tectonics are known from Panama (Wilcox et al., 1973). Marshall
and Fisher (2000) observed transpression and crustal thickening
in the back-arc area, related to the Trans Isthmic Fault System. This
fits to the Moín High. There is no direct evidence on the seismic
sections that the Moín High is, e.g., a positive flower structure,
but the strong bend of the Trans Isthmic Fault System south of
the Moín High might point to a transpressional origin in general
(Fig. 3b). The Moín High is probably a transpression related anti-
cline, which formed as a consequence of the movements along
the fault zone. This interpretation also coincides with the geometry
of the Moín High and the uplift history described above.
7. Conclusions

The Moín High is a large Eocene contractional structure located
in the back-arc area of Central Costa Rica. The integration of seis-
mic interpretation, well data, 3D static models and basin modelling
techniques implies that the Moín High is an Eocene anticline struc-
ture. Support for an anticline origin is the vertical movements,
which are recorded for the structure and the NNE–SSW trending
axis, that fit to the Eocene deformation phase of the island-arc. In
addition pre-growth, growth and post-growth strata can be clearly
distinguished on the seismic sections. Probably the Moín High is a
pressure ridge that is caused by transpression due to activity along
the Trans Isthmic Fault System. A seamount origin can be ruled out
because phases of uplift are unusual for a seamount. An origin as a
magmatic intrusion is very unlikely because of the observed heat
flow and vitrinite reflectance data. An evolution as a salt pillow/
diapir can be ruled out because of the lack of salt in the back-arc
area of southern Central America. The Moín High clearly is not re-
lated to younger events like the evolution of the Limón fold-and-
thrust belt (Plio-Pleistocene) or to the subduction of the Cocos
Ridge.
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